Package ch.bailu.gtk.glib
Class Mutex
java.lang.Object
ch.bailu.gtk.type.Type
ch.bailu.gtk.type.Pointer
ch.bailu.gtk.type.Record
ch.bailu.gtk.glib.Mutex
- All Implemented Interfaces:
PointerInterface
The #GMutex struct is an opaque data structure to represent a mutex
(mutual exclusion). It can be used to protect data against shared
access.
Take for example the following function:
It is easy to see that this won't work in a multi-threaded
application. There current_number must be protected against shared
access. A #GMutex can be used as a solution to this problem:
Notice that the #GMutex is not initialised to any particular value.
Its placement in static storage ensures that it will be initialised
to all-zeros, which is appropriate.
If a #GMutex is placed in other contexts (eg: embedded in a struct)
then it must be explicitly initialised using g_mutex_init().
A #GMutex should only be accessed via g_mutex_ functions.
(mutual exclusion). It can be used to protect data against shared
access.
Take for example the following function:
<!-- language="C" --> int give_me_next_number (void) { static int current_number = 0; // now do a very complicated calculation to calculate the new // number, this might for example be a random number generator current_number = calc_next_number (current_number); return current_number; }
It is easy to see that this won't work in a multi-threaded
application. There current_number must be protected against shared
access. A #GMutex can be used as a solution to this problem:
<!-- language="C" --> int give_me_next_number (void) { static GMutex mutex; static int current_number = 0; int ret_val; g_mutex_lock (&mutex); ret_val = current_number = calc_next_number (current_number); g_mutex_unlock (&mutex); return ret_val; }
Notice that the #GMutex is not initialised to any particular value.
Its placement in static storage ensures that it will be initialised
to all-zeros, which is appropriate.
If a #GMutex is placed in other contexts (eg: embedded in a struct)
then it must be explicitly initialised using g_mutex_init().
A #GMutex should only be accessed via g_mutex_ functions.
-
Field Summary
-
Constructor Summary
-
Method Summary
Methods inherited from class ch.bailu.gtk.type.Pointer
asCPointer, cast, connectSignal, disconnectSignals, disconnectSignals, equals, hashCode, throwIfNull, throwNullPointerException, toString, unregisterCallbacks, unregisterCallbacks
Methods inherited from class ch.bailu.gtk.type.Type
asCPointer, asCPointer, asCPointerNotNull, asJnaPointer, asJnaPointer, asPointer, asPointer, cast, cast, throwIfNull
Methods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
Methods inherited from interface ch.bailu.gtk.type.PointerInterface
asCPointerNotNull, asJnaPointer, asPointer, isNotNull, isNull
-
Field Details
-
P
- See Also:
-
-
Constructor Details
-
Mutex
-
-
Method Details
-
getClassHandler
-
getFieldP
-
clear
public void clear()Frees the resources allocated to a mutex with g_mutex_init().
This function should not be used with a #GMutex that has been
statically allocated.
Calling g_mutex_clear() on a locked mutex leads to undefined
behaviour. -
init
public void init()Initializes a #GMutex so that it can be used.
This function is useful to initialize a mutex that has been
allocated on the stack, or as part of a larger structure.
It is not necessary to initialize a mutex that has been
statically allocated.
<!-- language="C" --> typedef struct { GMutex m; ... } Blob; Blob *b; b = g_new (Blob, 1); g_mutex_init (&b->m);
To undo the effect of g_mutex_init() when a mutex is no longer
needed, use g_mutex_clear().
Calling g_mutex_init() on an already initialized #GMutex leads
to undefined behaviour. -
lock
public void lock()Locks @mutex. If @mutex is already locked by another thread, the
current thread will block until @mutex is unlocked by the other
thread.
#GMutex is neither guaranteed to be recursive nor to be
non-recursive. As such, calling g_mutex_lock() on a #GMutex that has
already been locked by the same thread results in undefined behaviour
(including but not limited to deadlocks). -
trylock
public boolean trylock()Tries to lock @mutex. If @mutex is already locked by another thread,
it immediately returns %FALSE. Otherwise it locks @mutex and returns
%TRUE.
#GMutex is neither guaranteed to be recursive nor to be
non-recursive. As such, calling g_mutex_lock() on a #GMutex that has
already been locked by the same thread results in undefined behaviour
(including but not limited to deadlocks or arbitrary return values).- Returns:
- %TRUE if @mutex could be locked
-
unlock
public void unlock()Unlocks @mutex. If another thread is blocked in a g_mutex_lock()
call for @mutex, it will become unblocked and can lock @mutex itself.
Calling g_mutex_unlock() on a mutex that is not locked by the
current thread leads to undefined behaviour.
-